
' S O M E P R O B L E M S IN DISTRIBUTING REAL-TIME A D A
P R O G R A M S A C R O S S M A C H I N E S I

Richard A. Volz ~
Arch W. Naylor

Trevor N. Mudge
John H. Mayer

A b s t r a c t

The Ada Research Group of the Robotics Research Laboratory at The University of
Michigan is currently developing a real-time distributed computing capability based upon
the premises that real-time distributed languageJ provide the best approach to real-time
distributed computing and, given the focus on the language level, that Ada offers an excel-
lent candidate language. The first phase of the group's work was on analysis of real-time
distributed computing. The second, and current, phase is the development of a pre-
translator which translates an Ada program into n Ada programs, each being targeted for
one of a group of processors and each having required communication support software
automatically created and attached by the pre-translator. This paper describes the pre-
translator being developed and a number of issues which have arisen with regard to the
distributed execution of a single Ada program, including language semantics, objects of
distribution and their mutual access, network timing, and execution environments.

I. I n t r o d u c t i o n

"Ada" is the result of a collective effort to design a common language for program-
ming large scale and real-time systems." So states the foreword to the Ada Language
Reference Manual [DoD83]. This statement has often been elaborated to mean that Ada
is intended for large, embedded, real-time systems executing in a coordinated fashion on a
number of machines. Yet, to date, while tremendous effort has gone into the design of the
language, the development of compilers for it, and the development of the Ada Program-
ming System Environment, relatively little emphasis has been placed on the distributed
and real-time issues. This paper addresses there latter two issues through the vehicle of
distributed language, that is, one in which a single program may be executed on a distri-
buted set of processors.

There are, nevertheless, a number of advantages to the use of a real-time distributed
language capability, including:

• Real-time distributed systems are typically large and complex, and, consequently,
difficult for a programmer or programming team to mentally encompass. The
conceptual advantages associated with viewing the system as one large, highly-
structured, program in one language are enormous.

• Interprocessor communication has been found to be one of most difficult and ~ime
consuming aspects of building complex distributed systems [VMG84], [VoM84],
[Car84]. If this could be made implicit, the programmer could be spared a great
amount of onerous detail. Fortunately, this is usually possible because the com-
piler can "see ~ the entire program at one time.

• Modern software concepts such as data and program abstractions [ShaS0], and
compile time error checking intended for the language level can be applied over
the entire system as opposed to just over each of several individual parts with no
checking between them.

IThis work is s u p p o r t e d by L a n d S y s t e m s Divis ion of Genera l D y n a m i c s u n d e r c o n t r a c t ~ D E Y - 6 0 0 4 8 3

~ZThe A d a R e s e a r c h G r o u p o f t he Robo t i c s R e s e a r c h L a b o r a t o r y , D e p a r t m e n t o f Elect r ica l Eng inee r i n 8
a n d C o m p u t e r Science, T h e U n i v e r s i t y of Mich igan , A n n Arbor , M i c h i g a n 48109.

~ ~. - ~ ~ • ~ . . ~ . i : i~ ~ • . ~ .. ~z~ ~ . ~ = ! - ~ = , . ~ ~ ~ ~ ~:i~..~% i~=i = ~ i ~ ~ ~ / ~ i ~ ,~ ~

trev
Typewritten Text
Eds: J. Barnes, G. Fischer. The 1985 International Ada Conference. May, 1985. pp. 72-84.

i !i f ii!i. ' .
• Synchronization and timing is, on the one hand, mo!~e i e l V ~ ~ +] ' o r - t k e +pro..'

grammer, while, on the other, the tedious details, as in:dleease.~!eommunication
and conversion, are suppressed. + : ~ .

Once the need for a real-time distributed language is accepted,, there are three
choices: create a new language, modify an existing language, or, if feasible, use an existing
one. Ada is an excellent candidate for the latter approach for a number of reasons. The
Ada concept was designed to provide modern software tools for programming large, com-
plex systems, to be highly portable, to provide closely monitored etaudarcb, to have an
excellent support environment, and to provide programming mechanisms for real-time sys-
tems. Moreover, it provides mechanisms, e.g. pragmas, which can be implementation
defined and are suitable for managing the distribution of a program in situations where
the distribution is possible, while remaining consistent with the Ada language definition,
even when distribution is not possible. +

One approach to the distributed execution of a single Ada program would be to write
an entirely new compiler and run-time system to manage the translation, and it may even-
tually be shown that this is the correct approach. However, it is not dear that enough is
yet known about the ramifications arising from distributed execution to make the large
investment necessary for this approach worth while. Instead, our group is taking a
simpler approach. An experimental pre-translator is being developed which will translate
a single Ada program into aset of inter-communicating Ada source programs, one for each
node of the target network. Each of the Ada source programs created: (1) realizes part of
the .original Ada source program (typically this is close to a copy of a portion of the
source); and (2) adds Ada packages to support the harmonious distributed execution of
the resultant Ada programs. Each object Ada program is subsequently compiled by an
existing Ada compiler for the processor for which the program is targeted, as illustrated in
Figure 1 .

Sinole
fmurce

r)) I~'~Ir a m f

I L-+I
Source 1

for
Machine 1 F

Translator
for

Machine 1

,,,,+mj+:, co++
f

r) Machine N

I '
Trms|ator

for
b4achir~ N

I

F k n r e 1

d ~ ~ + ~

.i[

74

The development of the pre-translator is intended not only to provide an experimen-
tal tool for exploring many aspects of distributed real-time systems, but to expose
language and implementation difficulties as well [VMN84]. Work to date has, indeed,
revealed a number of problems in the distribution of Ada programs across heterogeneous
processors. This paper discusses the more important part of these problems, organizing
them under the headings of Definitional Issues, Object Access, Network Timing, and Exe-
cution Environments. This is followed by an introduction to the strategy being used to
develop the pre-translator. Armitage and Chelini [ArC85] describe somewhat similar
issues but in less detail.

2. Def in i t iona l Issues

Understanding the legal behavior of an Ada program which executes in a distributed
manner requires extended study of the Language Reference Manual (LRM). Some issues
which seem clear in the uniprocessor case are less so when distributed execution is con-
sidered. This section identifies some of these issues and discusses possible interpretations.

2.1. Ob jec t s o f D i s t r i bu t i on

The first question facing anyone who wishes to build a system allowing distributed
execution of Ada is "What can be distributed?" The Language Reference Manual does not
give an answer to this. Nor does it say how the distribution is to be specified. All that
can be said is that the distributed execution of the program must be in accordance with
the LRM. There are many levels of granularity at which one could define a set of entities
to be distributed.

A rather coarse degree of granularity, which could be convenient from the perspec-
tive creating machine load units, is the use of packages as the objects of distribution.
Through items declared in their visible part they can provide considerable flexibility in
the items made available on remote machines. The distribution of most units smaller
than packages creates a problem in building 10ad units, as it becomes necessary to embed
them within a library unit of some kind. For example, if a task or data item alone is to
be distributed how is it to be stored and loaded on the remote machine? Tasks and data
items alone can not be compilation units.

Nevertheless, in our experimental system we opted for a fine degree of granularity
and allow the distribution of any object that can be created. Any object which can be
allocated, data or execution, is allowed to be distributed. This choice was made for two
reasons. First, it will allow us to explore the implementation strategies needed for all
kinds of objects. Second, taking what are essentially the smallest meaningful distribution
objects permits a study of distributed programming styles which is uninhibited by restric-
tive implementation decisions. The flexibility made possible by these two choices is
important because systems that allow distributed execution are new and techniques for
writing distributed programs (as opposed to writing collections of cooperating programs)
have yet to be created.

2.2. Conditional Entry Calls

Conditional entry calls are a source of possible confusion in the distributed execution
of a program due to network delays in calling across machines and the meaning of the
word "immediate" in the semantic description of the call. The LRM states that "A condi-
tional entry call issues an entry call that is then cancelled if a rendezvous is not immedi-
ately possible." The possible difficulty is in the word "immediate ~. At least one group
[DGC83] has determined that due to network delays, conditional entry calls should always
fail when the call is to a remote machine. However, the LRM also suggests a different
interpretation when it restates the conditions for cancellation of the call, "The entry call
is cancelled if the execution of the called task has not reached a point where it is ready to
accept the call, .., or if there are prior queued entry calls for this entry".

• L!ili i! iiiii i

if one adds the interpretation "when the call reacheSthe ~ second
LRM statement given above, a clear interpretation results. T h i s ~ ~ i s indepen-
dent of the time required to initiate the rendezvous. It depends ouly~ul~gn ~lie readiness of
the called task. This is appropriate. If a sense of time is required,: timed entry calls
should be used.

9.3. Timed Entry Calls

The timed entry call is the one place in the LRM where an upper bound on the time
duration for some action to take place is stated. There are several questions to be con-
sidered with respect to timed entry calls. The LRM says both that the entry call ".... is
cancelled if a rendezvous b no t s t a r t e d within a given delay," and that if the "..rendez-
vous can be s t a r t ed within the specified duration ..., it is performed .,. ' . (emphases
added). The former implies that execution of the rendezvous must be started within the
delay, while the latter implies only that it be able to be started within the given delay.

in most distributed situations the problem will be complicated, not only by a net-
work delay, but also by an uncertainty in the consistency of the sense of time maintained
on two or more processors (see section 4 for a detailed discussion of this point). Since
there is likely to be an uncertainty in the difference in the sense of time available on two
different processors, it may not be possible to make a precise determination of whether a
rendezvous can or cannot be started within a given time interval. However, in many
implementations it will be possible to provide bounds on the difference in the sense of
time between two processors. This will make it possible to guarantee that if the rendez-
vous can be started within a calculable bound (as measured on the processor on which the
called task resides), the called task can also be started within the given delay as measured
on the processor from which the call was made. In these cases,i there will be an uncer-
tainty interval in which it will not be possible to determine whether or not the call can be
started within the given time delay as measured on the processor from which the call is
made.

An interpretation of timed entry calls for the distributed environment which would
reflect these considerations would be that "if the call can be guaranteed to be able to start
within the given delay it is started, and is cancelled otherwise ~. For the uncertainty inter-
val, during which it might or might not be possible to start the called task, the timed
entry call would be cancelled.

A second issues arises from the statement that timed entry calls with zero or nega-
tive delays are to be treated as conditional entry calls. Under the condition that the
called task is ready to accept a call, an inconsistency arises with respect to whether the
rendezvous is completed or cancelled. Due to delays in network transmission, there ~vill be
a set of small delays for which the rendezvous fails, while for delay values either above or
below those in the set the rendezvous would succeed. This situation is illustrated in Fig-
ure 2 below. To be consistent, there should be a single dividing line, above which the calls
succeed (if the called task is ready) and below which they fail. A more consistent state-
ment would result if the LRM did not contain the phrase about treating the case with
zero or negative delay as conditional entry calls. Nevertheless, though unfortunate, the
LRM does state quite clearly that the situation is as shown in Figure 2.

The implementation aspects of timed entry calls will be discussed further in conjunc-
tion with network timing in section 4.

- y :

3. Objec t Access

3.1. Modes of Access

The structure of Ada permits two different modes of access amongex~cution objects
(subprogram units or tasks). One is by passing parameters in st~bprograml calls or task

~. entries. The other is by shared variables that exist in the c o m m o a ~ i ~ - t h e execution • i .~

76

Timed Entry CtlIs SucceeO Timed Entry Calls Flil I Timed Entry CIIII$ Succeed

¢lelty.

Figure 2

delly t,ime

Time entry call success vs. delay time, assuming called task read to accept
the call.

objects.

Ada requires that parameters be passed by copy. To avoid possible inefficiencies
parameters that are arrays, records or task types may be passed by reference provided the
effect is by copy. In the case of execution objects on tightly coupled machines s passing by
reference, while keeping the appearance of by copy, can be efficient and makes sense.
However, in the case of loosely coupled machines 4, passing by reference will lead to cross
machine communication on each reference to the object passed, it thus seems natural to
pass all parameters by copy. When the execution objects communicate over a Local Area
Network (LAN), such communications are normally thought of as messages. This leads us
to refer to access by copying parameters as message passing.

On the other hand communication between two execution objects through shared
variables can be most naturally implemented with a shared logical memory. In the case
where the shared logical memory is implemented as a shared physical memory this
presents few problems. However, in the case where there is no underlying shared physical
memory the run-time system must create the illusion. This leads us to refer to communi-
cation through shared variables as shared memory communication. If we return to the
case of execution objects communicating over a bAN, but now consider shared variable
access, the potential for inefficient communication becomes clear.

3.2. Address ing

The assumption that the objects of distribution may be any object that can be
created in the language results in a large set of object access situations which must be
explored. Objects may be created in three distinct ways: by declaration statement, by the
new allocator, and, in the case of blocks, by their occurrence in the instruction stream.
The types of objects which can be created by declaration statements are:

• sca lars

• arrays

• records

• subprograms

• tasks

• packages

• access variables

The complications in object referencing arise primarily when one is implementing shared

* Machines that share physical memory.

4 Machines that do not share physical memory.

. : / • . f .

memory access on loosely coupled machines. The Ada scoifing r e l ~ i ~ ~ w e n i e n t ,
though not necessarily well-advised, to write programs in this m a t r: CQln~'son with
the tightly couple case will clarify this point.

3.2.1. Ob jec t Access in T igh t ly Coupled Maehlnea

In the case of tightly coupled machines, shared data object references can be imple-
mented as in a uniprocessor case. This requires that the underlying hardware memory pro-
tection system allow user processes on multiple machines to access the same regions of
physical memory, but otherwise creates no problems for handling variables or pointers not
already present in the language. Access to remote execution objects requires a signalling
mechanism among the processors involved to permit the receipt of a remote call, but
requires no special mechanisms for handling the actual parameters of the call. The trade-
offs between communication by shared variables or message passing are the •same as for a
uniprocessor implementation.

The principal difficulties that accrue to the translation system in the tightly coupled
case lie in the recognition that a reference to a remote execution object has occurred. This
recognition is straightforward if the distribution specification is done statieally. However,
if it is to be done dynamically, e.g. by placing a "site" pragma immediately preceding a
new allocator for a task instantiation, an implicitly declared and assigned data structure
is required to hold an identifier for the processor on which the execution object is to be
placed. All references to execution objects via access variables m u a t t h e n reference this
implicitly declared variable to determine the residency of the called object.

8.2.2. Ob jec t Access in Loosely Coupled MLch|nes

In a loosely coupled architecture, the situation is considerably more involved, some of
the solutions considerably less efficient and there are significant:differences between
shared variable and message passing communication. Each shared variable reference to a
remote data object must be translated into a remote procedure call t o n server of some
kind on the processor holding the object. This server must then perform the required
operation, and, if necessary, return a message containing the value of the object. On the
other hand, if the variables are communicated via message passing references to them will
be to the local copies and communication overhead will be substantially less.

The question of address representation is also immediately raised. The address of an
object must include the address of the machine of residence. In the case of static distribu-
tion and direct references, this does not necessarily require any change to the local
methods of address representation because the machine of residence can be identified in
the pre-translator's symbol table and the pre-translator can place the code so that only
local references are necessary, with messages sent between processom as needed.

Additional complications arise with either static or dynamic allocation when access
variables are used because the pointer held in an access variable may reference an object
on another processor, and the representation of that access variable might be different
than the representation of access variables on the machine holding tile object. The
address of an object may be modeled, though not necessarily implemented, as a record
with variant parts; the first component would contain a processor designation, and the
variant part would contain the address of the object on the processor on which it resides.
Note that this generalized view of addresses is required for pointer variables, though not
for direct references, even in the static distribution case because assignments to access
variables can change the machine containing the object referenced.

The referencing of remote execution objects requires, as in the shared memory situa-
tion, a signalling mechanism to permit the remote machine to receive the call in this
case, however, the actual parameters of the call must be sent to the ~ o t e processor,
presumably via some type of message passing system. As noted above,!role Scalar variables

78

the message passing is quite natural, since Ads requires call by copy. Although in the case
of arrays and records, the LRM allows call by reference to be used under certain condi-
tions, it would seems more appropriate to use call by copy since otherwise, each reference
to the argument will involve the same kind of cross machine communication that occurs in
the use of shared variables. The programmer always has the option of using access vari-
ables if it really is desired to access the arguments by reference. The problem can be
further complicated by the fact that the actual arguments might not reside on the proces-
sor from which the call is made. In particular, if they should happen to reside on the
same processor as the execution object being called, then in the case of records and arrays,
the use of pointers might still be the most efficient method of parameter passing.

4. N e t w o r k T iming

The Language Reference Manual does not absolutely require that an implementation
provide delay timing; it is legal for an implementation to go away and never return on a
delay statement. However, for many applications the language would be significantly
reduced in utility without this capability. As the principal applications of interest here
are real-time systems, all of the discussion in this section is pertinent to the situation in
which an implementation does provide timing capabilities.

4.1. N e t w o r k Sense o f T i m e

The package CALENDAR provides functions which return values of type TIME.
The implication is that there is a single sense of TIME throughout at least the execution
of the program, if not between different executions of the program. That is, if CLOCK is
called twice, with an intervening interval of one second, the calculated difference in the
times should be one second. This poses an implementation problem when multiple proces-
sor~ are used for the execution of the program. How is a consistent sense of time main-
tained across the network? There are at least two possibilities, maintain a network time
server to which all processors go when they need a value for time, or maintain separate
but synchronized clocks on each processor. Combinations, of course, are also possible.
Each has its own set of problems and limitations.

In the case of the network time server, the principal difficulty occurs because of the
time required to access the time server. Two subproblems must be considered, the propa-
gation delay, and interfering access requests. It might be possible to compensate for the
first by subtracting the response time from the time returned, if the response time were
reliably known. However, the second problem usually injects an uncertainty in the
response time from the server. For some timer server configurations, however, it may be
possible to bound the uncertainty in the time value returned.

The maintenance of perfectly synchronized local clocks is not possible. The best that
can be done is to choose one as a master an update the others from it periodically.
Between clock update points, there is an uncertainty of the difference between values of
TIME read on different processors. The purpose of updating the clocks is to bound this
uncertainty. One might, for example, try to keep this uncertainty less than one half of
DURATION'SMALL. One experiment in maintaining synchronization among system
clocks has been reported by Gusella and Zatti [GuZ84]. They found that to keep a net-
work of VAX computers and SUN workstations synchronized to within 20 ms required
updates once every 173 seconds. Scaling this to 25 microseconds (half of the 50
microsecond DURATION'SMALL recommended in the LRM) is moderately discouraging.
Major improvements might be possible, though, by using a more stable clock in each of
the processors.

4.2. T imed E n t r y Call I m p l e m e n t a t i o n

Most of the Ads constructs which reference time only require a local sense of time at
each processor. For example, a delay statement within a task is simply a local delay with

respect to processor on which the task resides. Similarly, the ~m~ = i~fiative in
a select statement with an accept statement is strictly local T h :~nstruct,
however, which if implemented in a nontrivial manner requires] ~ / t h i ! ~ l ~ p 6 r b o u n d on
the time within which a given action must take place (all other ¢ o n g r ~ ~U/g place lower
hounds on time intervals) and a consistent sense of time among the distril~uted processors.
This construct is the timed entry call. " "

The trivial implementation of the timed entry call would be to say that there is no
sense of time (across the network) and therefore that the rendezvous never takes place
and the calling unit executes the alternative reference of code. If a aontrivial implementa-
tion- is to he accomplished, then the timing of the action to be takea-0n the called unit
must be determined with respect to the time scale of the calling ,unit. Otherwise, the
language specification of the LRM cannot be guaranteed

Consider a timed entry call made at time t~, with a delay d , from a processor A to
an entry on processor B. The time t~ = t I + d is the time by whichthe called task must
be able to accept the call. Figure 3 illustrates the timing involved for non-negligible net-
work delays. Two cases are shown. For case 1, the called entry is able to accept the call
at time t : - ~ and the rendezvous is accepted. For case 2, time t : is reached without the
entry call being accepted and the timed entry fails. Note that ~is both cases processor A
cannot know whether or not the call was accepted until some time after t 2. This requires
a liberal interpretation of paragraph 9.6 of the LRM which states that ",,the entry call is
canceled when t h e specified du ra t ion is expired and the optional sequence of state-
ments of the delay alternative is executed" (emphasis added). Taking the alternative
sequence (if present) at time t~ + d + n~ on processor A is consistent with the LRM if
one takes the view that taking the alternative sequence only means:making it ready at
some time after t2 . The network delay, .~ , might or migh t not be known, or even
bounded. It might well be different on the two transmissions. If nj > J , then the ren-
dezvous must fail.

4.2.1. N e t w o r k T i m e Server

With a network time server, the scenario would he as follows:

* The processor containing the calling process will obtain the time from the network
server and include both it and the specified delay in the timed entry call message

P l r o c e . l ~ o r A

irne
II

Processor B ~ _ ~
n 0

I 1

t o

' - y . - v - .

L

t ! •= time of time entry call
d

d ~ delay in timed entry call
n~ = network delay
t 2 ~ t I + d = time by which called task must be able to

; , ,, ,

/

accept,

• ~ ~. ,~:~

Figure 3

8O

sent to the processor holding the called task.

• The procesvor having the called task will call the network time server to obtain
the time at the time the call is received.

• The processor containing the called task will compute the remaining time delay
with which the called task is requested to start.

• Local management of the timed entry call will proceed as usual.

in this case the network delay used above must include the two timer server access times
in addition to the call transmission time.

In order to obtain an expression for the local delay to be used on processor B in
implementing this call, let t l ~ be the value returned from the network timer server
corresponding to time t I at which the call was made and t, I be the value returned
corresponding to t , , the time at which the call message is received at processor B. Then,
if the error in the times returned is bounded by ds , then the local delay dl satisfies the
following inequality:

d, f f i d -(t. -

> d + t / - t . ' - 2 d B

and the right had side of the inequality may be used to calculate the local delay on proces-
sor B.

4.2.2. M a i n t a i n S y n c h r o n i s m A m o n g Loca l C locks

An alternative method of providing timing is to maintain synchronism among the
local clocks of the processors. Similar to the situation in the previous section, there will
be an uncertainty interval in the difference between the measured values of the same
instant of t ime between any pair of processors. For purposes of analysis, take the time
measured on processor A as the reference and let t A, t s be the values for time t as meas-
ured on A and B respectively. Let] t A _ t 8 I --< dB- Then the delay time from t, to
the upper bound for t 2 can be bounded as follows.

a , f f i a - - , A) f f i a + -

The RHS of the inequality can safely be used as a bound on the local delay time from the
receipt of the request until the maximum value of t 2. Similarly, there is a minimum of
delay time tha t can succeed.

d >n~+dB

4.2.3. Rely on the E x p o r t e d V a l u e of Delay

A third mechanism to manage timed entry calls is to export the time from the calling
unit and use only this and local timing to manage things on the receiving processor. This
requires knowledge, or at least a bound on the network transmission times. If
[nd I --< d~, then the receiving unit could use d - d a as a local bound on delay until

t 2- The required existence of the bound d B in the purest sense imposes limits on the type
of network connection. Ethernets, for example, could not guarantee this bound; on the
other hand, they might be acceptable in a practical sense.

4.2.4. U n l p r o c e s s o r C o n s i d e r a t i o n s

Considerations such as those described above can be carried out in a uniprocessor
situation as well. For example, the delay na corresponds to the overhead associated with
implementing the checking and rendezvous. Indeed, these times should be included in n a

in the distributed situation as well. Depending upon the- i~el~Ylilmterval-
implemented, n,f may be significant. This is likely to be the , l~¢,¢uors at
the 50 pseeond granularity recommended in the LRM n u d ¢ ~ i : ~ ~ / ~ f o r the 10
psecond granularity discussed for some implementations. S t r | c t ! y ~ : ~ I d ~ i l these cases
a timed entry call for small delays should fail even though a conditional entry call should
succeed. This conformance is likely to be very difficult to measure, however.

5 . Execut ion E n v i r o n m e n t •

Implementations of Ads are to provide several predermed packsges as-part of the
environment available to the user. These include STANDARD, CALENDAR and
TEXT_IO, and in general, must be available on more than one processor. The questions
which arise are the consistency of data objects contained in or generated by subprograms
in the package and the need to reference an object in one of these packages on a different
processor, e.g. for !/O. These questions do not necessarily create a problem, but do
require an awareness on the part of the programmer of the semantics associated with mul-
tiple occurrences of these packages.

In package STANDARD, the values for objects like SYSTEM.MIN_INT or
SYSTEM.MAX_DIGITS may be different for the different occurrences of t he package.
Likewise, INTEGER, LONG INTEGER, SHORT_INTEGER, etc. may have different
meanings. The meanings, however, will be correct for the processor on which the package
resides, and this is exactly what the programmer will need. A s s matter of programming
discipline, the programmer may find it useful to make greater use of some of the system
descriptive objects to help in writing correct programs which can operate in the distri-
buted environment. The distributed translator, however, must be aware of the possible
differences in representation and supply the necessary translations. Also, it will be neces-
sary to check values and, when necessary, raise exceptions, during the translation process.

Particularly in the case of 1/O, it may be desired to reference an object supplied by
TEXT_I/O from a processor other than the one on which the object resides. By embed-
ding such requests in a block which is placed on the same processor as the referenced
TEXT_I/O object, one can avoid the need to invent new naming conventions which might
cause difficulties with the current definition or Ads.

Finally, since a fine degree of granularity is used, the implementation must provide a
suitable shell (probably a package) to house distributed objects such a~ data items or
tasks.

6 . Expe r ime n ta l T rans l a to r Imp lemen ta t ion

An Ads translator is being implemented which will convert a single Ads program
into a set of inter-communicating Ads source programs, one to run on each node of the
target network. The individual Ads programs will subsequently be compiled by existing
Ads compilers, as illustrated in Figure 1. The mapping of objects to network nodes will
be indicated by a pragma named SITE(.). When placed immediately before an object
declaration, a new allocator or the occurrence of a block in the instruction stream this
pragma will cause the following object to placed on the machine designator given as the
parameter to the pragma. Any object created without a SITE pragma preceding it is
assigned to the same node as the program unit in which the creation occurs. An alterna-
tive mapping scheme would use a distribution language which allows the same mapping
information to be specified separately from the program itself a s s sort of postscript
[Cor84].

• : - ~ : E , O ~ ~ - :

82

6.1. T r a n , l a t o r S t r a t e g y

The global strategy for handling cross-machine references is based on the static con-
struction of one or more special executable objects called agents. Each agent is designed to
serve one particular executable object of the original program which makes an off-machine
reference. The original executable object is called the master, to distinguish it from its
agents. The agents will typically be of the came type as their maste]~. If during execu-
tion a master should need to access data or code located on a remote machine, it will
order its agent on that machine to access the data or code for it. One master task may
thus have several agents and in the extreme case, may need an agent on each of the other
machines in the network.

To illustrate the general translation scheme, Figure 4 shows the source program and
the translations of a distributed program for an autonomous vehicle. The example system
has three interacting tasks: a planner, a vision system, and a drive control . The tasks are
labeled PLANNER, CAMERA, and WHEELS, respectively. In the source program they
are targeted for three different nodes. The translator will produce the three output pro-
grams shown. Note how PLANNER, itself residing on M3, has indirect access to both
CAMERA through AGENT OF PLANNER ON M1, and WHEELS via AGENT OF
PLANNER ON M2. For example, if the original PLANNER calls a procedure P within
CAMERA, PLANNER will be modified so that instead making the reference directly,
which is not possible, it will place the parameters of the call in a message which in then
sends to its agent residing on MI. PLANNER's agent will receive the message, decode it,
and discover that its master is attempting to call procedure P and, using the parameters

t h a t were included in the message, the agent will make the procedure call on its master's

IOUFK3E

• ~M1

WHEELS

I..ANNER

S A M P L E T R A N S L A T I O N

FOR b41 FOR b42

~ I E R A

AGENT OF
WHEELS
ON MI

AGENI" Of
P I . . ~ F I

AGENI" OF
CN,1EFIA
ONM2

WHEELS

AGEIql" OF
PI.ANNEFI
ON I,~12

FOIl I,,43

AGENI" OF
WHEELS
ONM3

P ~ R

F i g u r e 4 Distribution of source program to separate machine with agents inserted
to represent task on remote machines.

• ~ ' , ~ ~ ~ " ~- ~ ' ~ : : i ,~ i:~ / ~ ~ . ~ . ~ ~ , ~ - J - ~ . ~

i •ii i • •

behalf. After the call is done the agent will copy any o u t a message
which is then sent back to the master PLANNER. The m ~ ~ ~ : p a ~ a m e t e r
values from the returned message into its local variables and, h a ~ v i a g ~ ~ the call to
the remote procedure P, it continues execution.

The translator can be constructed in two distinct passes. The fu~t pass produces an
agent structure for each processor which is copy of the original program structure. Each
executable object will have an agent on each processor which it (or an object it contains)
references. The agents will be of the same type and will be nested in exactly the same
manner as their masters, thus preserving the proper scope of objects created within them.
This scheme, while generally applicable, can produce unnecessary menages among the pro-
cessors (see further discussion below). The second pass is a n optimization pass which
removes these unnecessary messages.

More specifically, the first pass involves three basic operations, one on overall pro-
gram structure, one on object declarations or blocks, and one on executable statements.
The first operation forms the distributed structure of the output code, maps the input
program into the appropriate parts and creates the necessary agents, it begi~ by extract-
ing the skeleton of frames of executable objects, where the skeleton ¢onsbts of the follow-
lug parts:

• an opening line which marks the beginning of the frame, e. g. "declare" for a
block or "procedure main is" for a procedure,

• the keyword "begin" which separates the declarative region of the frame from its
executable code,

• the "end" statement which closes the frame.

These frame skeletons, reflect the nesting of the frames of the program. On the one node
to which a frame is mapped, the skeleton encloses master version of the frame. On all oth-
ers, an agent is created from the skeleton by adding an infinite loop which begins each
iteration waiting for a command (message) from the master. After receiving a message, it
executes a case statement which contains one choice for each of the remote operations
required by the master. The agent uses the command to index into the case statement.

An agent is able to respond to any remote request it may receive from its master as
long as both master and agent are in corresponding nesting levels in the program struc-
ture. To ensure that this correspondence exists, each agent will enter and exit its version
of a frame in synchronism with its master. To illustrate, suppose that PLANNER is
about to call procedure P, also located on M3'. PLANNER's agents wilt have been execut-
ing server loops enclosed in their versions of the task PLANNER frame, Just before Calling
procedure P, PLANNER notifies its agents of the impending procedure call allowing them
to switch frames as well. One of the advantages of this scheme is that any remote objects
which have been declared in P will be allocated automatically as the agents enter their P
frames.

The operation on data object declarations is fairly straightforward. An object resides
only on the node to which it is mapped. There are multiple output streams, one for each
machine in the network, and all streams are in synchronism with respect to the code being
emitted. The declaration is simply placed in the skeleton of the agent for the machine on
which the object is to be located.

The situation for remote object creation via allocators is slightly more complex, as it
is both a run-time activity and involves pointers. The allocation expression is placed in
the appropriate agent in a manner similar to the way declarations are handled, and the
statement in original program is replaced by a remote procedure call to the agent, as
described below. The pointer variable is placed in a record structure as described earlier.

Within an execution object, off-machine subprogram or task entry nails are replaced
by remote subprogram calls to the appropriate agent which makes ~theeall~on behalf of

83

r

84

the master and returns whatever results are required. Each reference to an off-machine
data object, e.g. remote shared variables, is replaced by a remote subprogram call to the
agent on the machine holding the referenced object, with an appropriate command code
and any parameters required encoded into the call. If required, values are returned as
function results, and used as normal in executing the statement in which the reference
O C C U R S .

7. Summary and Conelunlons
A number of important issues which occUR in the distributed execution of a single

Ads program have been raised, and an experimental implementation of a translator which
allows distributed execution described. The issues raised include the interpretation of the
LRM in the context of distributed execution (e.g. constructs such as conditional and timed
entry calls), the need for a consistent network view of time, and a number of implementa-
tion problems such as remote object access, network time management, data and address
representations, and execution environments.

The experimental translator allows any data or named execution object to be distri-
buted. It recognizes a pragma type named SITE as specifying the distribution. The
translator takes a single Ads program as input and produces a set of Ads programs, one
for each processor in the •distributed computer network, as output. The general strategy
for the implementation has been developed, and at the time of this writing, the translator
is functional, but only partially complete, handling only •simple distribution of tasks with
no entry parameters.

References

[ArC851

ICar841

[CotS4 l

[DaC l

IDoD~

[Guzs4]

IShaS0l

[VoMS4]

iVMG841

[VMM841

Armitage, J.W. and J.V. Chelini, "Ads software on distributed targets: a survey of
approaches," Ado Letters, vol. 4, no. 4, pp. 32-37, January-February 1985.

Carlisle, B., "Sensor-based control: robot programming issues," Workshop on lnteilipent
Robots: Achievements and Issues, Ski International, Menlo Park, CA, Nov. 13-14, 1984.

Cornhill, D., "Partitioning Ada programs for execution on distributed systems," lgS~
Computer Data Engrg. Conf., 1984.

Darpa, A., S. Gatti, S. Crespi-Reghizzi, F. Maderna, D. Belcredi, Natali, R. A. Stammers,
and M.D. Todd, Using Ada and APSE to support distributed multimicroprocessor targets,
Commission of the European Communities, July 1982 - March 1983.

Ada programming language (ANSI/MIL-STD-1815A). Washington, D.C. 20301: Ada
Joint Program Office, Department of Defense, OUSD(R&D), Jan. 1983.

Gusella, R. and S. Zatti, "TEMPO - A network time controller for a distributed Berkeley
UNIX system," Distributed Processin~ Technical Committee Newsletter, informal publi-
cation of IEEE Computer Society Committee on Computer Processing, vol. 6, no. SI2-2,
pp. 7-14, June 1984.

Shaw, M., "The impact of abstraction concerns on modern programming languages,"
Proc. of the IEEE, vol. 68, no. 9, pp. 1119-1130, Sept. 1980.

Volz, R.A. and T.N. Mudge, "Robots are (nothing more than) abstract data types,"
Proe. of the Robotics Research Conference: The Nezt 5 Years and Beyond, Aug. 14-16,
1984.

Volz, R.A. , T.N. Mudge and D.A. Gal, "Using Ads as a programming language for
robot-based manufacturing ceils," IEEE Trans. on Systems, Man and Cybernetics,
December, 1984.

Volz, R.A., T.N. Mudge, A.W. and J.H. Mayer "Some Problems in Distributing Real-
Time Ada Programs Across Heterogeneous Processers," IEEE Workshop on Real-Time
Operating Systerf~, Wakefield, Mass., November 1984.

. . . . ~ ~• • ~ • :~ • , , - • ~ • ~ : ~ . . ~ , ' ~ s ~ • ~ _

