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The Ada Research Group of the Robotics Research Laboratory at The University of 
Michigan is currently developing a real-time distributed computing capability based upon 
the premises that  real-time distributed languageJ provide the best approach to real-time 
distributed computing and, given the focus on the language level, that Ada offers an excel- 
lent candidate language. The first phase of the group's work was on analysis of real-time 
distributed computing. The second, and current, phase is the development of a pre- 
translator which translates an Ada program into n Ada programs, each being targeted for 
one of a group of processors and each having required communication support software 
automatically created and attached by the pre-translator. This paper describes the pre- 
translator being developed and a number of issues which have arisen with regard to the 
distributed execution of a single Ada program, including language semantics, objects of 
distribution and their mutual access, network timing, and execution environments. 

I.  I n t r o d u c t i o n  

"Ada" is the result of a collective effort to design a common language for program- 
ming large scale and real-time systems." So states the foreword to the Ada Language 
Reference Manual [DoD83]. This statement has often been elaborated to mean that Ada 
is intended for large, embedded, real-time systems executing in a coordinated fashion on a 
number of machines. Yet, to date, while tremendous effort has gone into the design of the 
language, the development of compilers for it, and the development of the Ada Program- 
ming System Environment, relatively little emphasis has been placed on the distributed 
and real-time issues. This paper addresses there latter two issues through the vehicle of 
distributed language, that is, one in which a single program may be executed on a distri- 
buted set of processors. 

There are, nevertheless, a number of advantages to the use of a real-time distributed 
language capability, including: 

• Real-time distributed systems are typically large and complex, and, consequently, 
difficult for a programmer or programming team to mentally encompass. The 
conceptual advantages associated with viewing the system as one large, highly- 
structured, program in one language are enormous. 

• Interprocessor communication has been found to be one of most difficult and ~ime 
consuming aspects of building complex distributed systems [VMG84], [VoM84], 
[Car84]. If this could be made implicit, the programmer could be spared a great 
amount of onerous detail. Fortunately, this is usually possible because the com- 
piler can "see ~ the entire program at one time. 

• Modern software concepts such as data and program abstractions [ShaS0], and 
compile time error checking intended for the language level can be applied over 
the entire system as opposed to just over each of several individual parts with no 
checking between them. 
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grammer, while, on the other, the tedious details, as in:dleease.~!eommunication 
and conversion, are suppressed. + : . . . .  ~ . 

Once the need for a real-time distributed language is accepted,, there are three 
choices: create a new language, modify an existing language, or, if feasible, use an existing 
one. Ada is an excellent candidate for the latter approach for a number of reasons. The 
Ada concept was designed to provide modern software tools for programming large, com- 
plex systems, to be highly portable, to provide closely monitored etaudarcb, to have an 
excellent support environment, and to provide programming mechanisms for real-time sys- 
tems. Moreover, it provides mechanisms, e.g. pragmas, which can be implementation 
defined and are suitable for managing the distribution of a program in situations where 
the distribution is possible, while remaining consistent with the Ada language definition, 
even when distribution is not possible. + 

One approach to the distributed execution of a single Ada program would be to write 
an entirely new compiler and run-time system to manage the translation, and it may even- 
tually be shown that this is the correct approach. However, it is not dear  that enough is 
yet known about the ramifications arising from distributed execution to make the large 
investment necessary for this approach worth while. Instead, our group is taking a 
simpler approach. An experimental pre-translator is being developed which will translate 
a single Ada program into aset  of inter-communicating Ada source programs, one for each 
node of the target network. Each of the Ada source programs created: (1) realizes part of 
the .original Ada source program (typically this is close to a copy of a portion of the 
source); and (2) adds Ada packages to support the harmonious distributed execution of 
the resultant Ada programs. Each object Ada program is subsequently compiled by an 
existing Ada compiler for the processor for which the program is targeted, as illustrated in 
Figure 1 .  
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The development of the pre-translator is intended not only to provide an experimen- 
tal tool for exploring many aspects of distributed real-time systems, but to expose 
language and implementation difficulties as well [VMN84]. Work to date has, indeed, 
revealed a number of problems in the distribution of Ada programs across heterogeneous 
processors. This paper discusses the more important part of these problems, organizing 
them under the headings of Definitional Issues, Object Access, Network Timing, and Exe- 
cution Environments. This is followed by an introduction to the strategy being used to 
develop the pre-translator. Armitage and Chelini [ArC85] describe somewhat similar 
issues but in less detail. 

2. Def in i t iona l  Issues 

Understanding the legal behavior of an Ada program which executes in a distributed 
manner requires extended study of the Language Reference Manual (LRM). Some issues 
which seem clear in the uniprocessor case are less so when distributed execution is con- 
sidered. This section identifies some of these issues and discusses possible interpretations. 

2.1. Ob jec t s  o f  D i s t r i bu t i on  

The first question facing anyone who wishes to build a system allowing distributed 
execution of Ada is "What can be distributed?" The Language Reference Manual does not 
give an answer to this. Nor does it say how the distribution is to be specified. All that  
can be said is that  the distributed execution of the program must be in accordance with 
the LRM. There are many levels of granularity at which one could define a set of entities 
to be distributed. 

A rather coarse degree of granularity, which could be convenient from the perspec- 
tive creating machine load units, is the use of packages as the objects of distribution. 
Through items declared in their visible part they can provide considerable flexibility in 
the items made available on remote machines. The distribution of most units smaller 
than packages creates a problem in building 10ad units, as it becomes necessary to embed 
them within a library unit of some kind. For example, if a task or data item alone is to 
be distributed how is it to be stored and loaded on the remote machine? Tasks and data 
items alone can not be compilation units. 

Nevertheless, in our experimental system we opted for a fine degree of granularity 
and allow the distribution of any object that  can be created. Any object which can be 
allocated, data or execution, is allowed to be distributed. This choice was made for two 
reasons. First, it will allow us to explore the implementation strategies needed for all  
kinds of objects. Second, taking what are essentially the smallest meaningful distribution 
objects permits a study of distributed programming styles which is uninhibited by restric- 
tive implementation decisions. The flexibility made possible by these two choices is 
important because systems that  allow distributed execution are new and techniques for 
writing distributed programs (as opposed to writing collections of cooperating programs) 
have yet to be created. 

2.2. Conditional Entry Calls 

Conditional entry calls are a source of possible confusion in the distributed execution 
of a program due to network delays in calling across machines and the meaning of the 
word "immediate" in the semantic description of the call. The LRM states that  "A condi- 
tional entry call issues an entry call that  is then cancelled if a rendezvous is not immedi- 
ately possible." The possible difficulty is in the word "immediate ~. At least one group 
[DGC83] has determined that  due to network delays, conditional entry calls should always 
fail when the call is to a remote machine. However, the LRM also suggests a different 
interpretation when it restates the conditions for cancellation of the call, "The entry call 
is cancelled if the execution of the called task has not reached a point where it is ready to 
accept the call, .., or if there are prior queued entry calls for this entry". 
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if one adds the interpretation "when the call reacheSthe ~ second 
LRM statement given above, a clear interpretation results. T h i s ~ ~ i s  indepen- 
dent of the time required to initiate the rendezvous. It depends ouly~ul~gn ~lie readiness of 
the called task. This is appropriate. If a sense of time is required,: timed entry calls 
should be used. 

9.3. Timed Entry Calls 

The timed entry call is the one place in the LRM where an upper bound on the time 
duration for some action to take place is stated. There are several questions to be con- 
sidered with respect to timed entry calls. The LRM says both that  the entry call ".... is 
cancelled if a rendezvous b no t  s t a r t e d  within a given delay," and that  if the "..rendez- 
vous can be s t a r t ed  within the specified duration ..., it is performed .,. ' .  (emphases 
added). The former implies that execution of the rendezvous must be started within the 
delay, while the latter implies only that it be able to be started within the given delay. 

in most distributed situations the problem will be complicated, not only by a net- 
work delay, but also by an uncertainty in the consistency of the sense of time maintained 
on two or more processors (see section 4 for a detailed discussion of this point). Since 
there is likely to be an uncertainty in the difference in the sense of time available on two 
different processors, it may not be possible to make a precise determination of whether a 
rendezvous can or cannot be started within a given time interval. However, in many 
implementations it will be possible to provide bounds on the difference in the sense of 
time between two processors. This will make it possible to guarantee that  if the rendez- 
vous can be started within a calculable bound (as measured on the processor on which the 
called task resides), the called task can also be started within the given delay as measured 
on the processor from which the call was made. In these cases,i there will be an uncer- 
tainty interval in which it will not be possible to determine whether or not the call can be 
started within the given time delay as measured on the processor from which the call is 
made. 

An interpretation of timed entry calls for the distributed environment which would 
reflect these considerations would be that "if the call can be guaranteed to be able to start 
within the given delay it is started, and is cancelled otherwise ~. For the uncertainty inter- 
val, during which it might or might not be possible to start the called task, the timed 
entry call would be cancelled. 

A second issues arises from the statement that timed entry calls with zero or nega- 
tive delays are to be treated as conditional entry calls. Under the condition that the 
called task is ready to accept a call, an inconsistency arises with respect to whether the 
rendezvous is completed or cancelled. Due to delays in network transmission, there ~vill be 
a set of small delays for which the rendezvous fails, while for delay values either above or 
below those in the set the rendezvous would succeed. This situation is illustrated in Fig- 
ure 2 below. To be consistent, there should be a single dividing line, above which the calls 
succeed (if the called task is ready) and below which they fail. A more consistent state- 
ment would result if the LRM did not contain the phrase about treating the case with 
zero or negative delay as conditional entry calls. Nevertheless, though unfortunate, the 
LRM does state quite clearly that the situation is as shown in Figure 2. 

The implementation aspects of timed entry calls will be discussed further in conjunc- 
tion with network timing in section 4. 

- y :  

3. Objec t  Access 

3.1. Modes of Access 

The structure of Ada permits two different modes of access amongex~cution objects 
(subprogram units or tasks). One is by passing parameters in st~bprograml calls or task 

~. entries. The other is by shared variables that exist in the c o m m o a ~ i ~ - t h e  execution • i .~  
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Figure 2 

delly t,ime 

Time entry call success vs. delay time, assuming called task read to accept 
the call. 

objects. 

Ada requires that  parameters be passed by copy. To avoid possible inefficiencies 
parameters that are arrays, records or task types may be passed by reference provided the 
effect is by copy. In the case of execution objects on tightly coupled machines s passing by 
reference, while keeping the appearance of by copy, can be efficient and makes sense. 
However, in the case of loosely coupled machines 4, passing by reference will lead to cross 
machine communication on each reference to the object passed, it thus seems natural to 
pass all parameters by copy. When the execution objects communicate over a Local Area 
Network (LAN), such communications are normally thought of as messages. This leads us 
to refer to access by copying parameters as message passing. 

On the other hand communication between two execution objects through shared 
variables can be most naturally implemented with a shared logical memory. In the case 
where the shared logical memory is implemented as a shared physical memory this 
presents few problems. However, in the case where there is no underlying shared physical 
memory the run-time system must create the illusion. This leads us to refer to communi- 
cation through shared variables as shared memory communication. If we return to the 
case of execution objects communicating over a bAN, but now consider shared variable 
access, the potential for inefficient communication becomes clear. 

3.2. Address ing  

The assumption that  the objects of distribution may be any object that can be 
created in the language results in a large set of object access situations which must be 
explored. Objects may be created in three distinct ways: by declaration statement, by the 
new allocator, and, in the case of blocks, by their occurrence in the instruction stream. 
The types of objects which can be created by declaration statements are: 

• sca lars  

• arrays 

• records 

• subprograms 

• tasks 

• packages 

• access variables 

The complications in object referencing arise primarily when one is implementing shared 

* Machines that share physical memory. 

4 Machines that do not share physical memory. 
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memory access on loosely coupled machines. The Ada scoifing r e l ~ i ~ ~ w e n i e n t ,  
though not necessarily well-advised, to write programs in this m a t  r: CQln~'son with 
the tightly couple case will clarify this point. 

3.2.1. Ob jec t  Access in T igh t ly  Coupled Maehlnea  

In the case of tightly coupled machines, shared data object references can be imple- 
mented as in a uniprocessor case. This requires that the underlying hardware memory pro- 
tection system allow user processes on multiple machines to access the same regions of 
physical memory, but otherwise creates no problems for handling variables or pointers not 
already present in the language. Access to remote execution objects requires a signalling 
mechanism among the processors involved to permit the receipt of a remote call, but 
requires no special mechanisms for handling the actual parameters of the call. The trade- 
offs between communication by shared variables or message passing are the •same as for a 
uniprocessor implementation. 

The principal difficulties that accrue to the translation system in the tightly coupled 
case lie in the recognition that a reference to a remote execution object has occurred. This 
recognition is straightforward if the distribution specification is done statieally. However, 
if it is to be done dynamically, e.g. by placing a "site" pragma immediately preceding a 
new allocator for a task instantiation, an implicitly declared and assigned data structure 
is required to hold an identifier for the processor on which the execution object is to be 
placed. All references to execution objects via access variables m u a t t h e n  reference this 
implicitly declared variable to determine the residency of the called object. 

8.2.2. Ob jec t  Access in Loosely Coupled MLch|nes  

In a loosely coupled architecture, the situation is considerably more involved, some of 
the solutions considerably less efficient and there are significant:differences between 
shared variable and message passing communication. Each shared variable reference to a 
remote data object must be translated into a remote procedure call t o n  server of some 
kind on the processor holding the object. This server must then perform the required 
operation, and, if necessary, return a message containing the value of the object. On the 
other hand, if the variables are communicated via message passing references to them will 
be to the local copies and communication overhead will be substantially less. 

The question of address representation is also immediately raised. The  address of an 
object must include the address of the machine of residence. In the case of static distribu- 
tion and direct references, this does not necessarily require any change to the local 
methods of address representation because the machine of residence can be identified in 
the pre-translator's symbol table and the pre-translator can place the code so that only 
local references are necessary, with messages sent between processom as needed. 

Additional complications arise with either static or dynamic allocation when access 
variables are used because the pointer held in an access variable may reference an object 
on another processor, and the representation of that access variable might be different 
than the representation of access variables on the machine holding tile object. The 
address of an object may be modeled, though not necessarily implemented, as a record 
with variant parts; the first component would contain a processor designation, and the 
variant part would contain the address of the object on the processor on which it resides. 
Note that this generalized view of addresses is required for pointer variables, though not 
for direct references, even in the static distribution case because assignments to access 
variables can change the machine containing the object referenced. 

The referencing of remote execution objects requires, as in the shared memory situa- 
tion, a signalling mechanism to permit the remote machine to  receive the call  in this 
case, however, the actual parameters of the call must be sent to the ~ o t e  processor, 
presumably via some type of message passing system. As noted above,!role Scalar variables 
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the message passing is quite natural, since Ads requires call by copy. Although in the case 
of arrays and records, the LRM allows call by reference to be used under certain condi- 
tions, it would seems more appropriate to use call by copy since otherwise, each reference 
to the argument will involve the same kind of cross machine communication that occurs in 
the use of shared variables. The programmer always has the option of using access vari- 
ables if it really is desired to access the arguments by reference. The problem can be 
further complicated by the fact that the actual arguments might not reside on the proces- 
sor from which the call is made. In particular, if they should happen to reside on the 
same processor as the execution object being called, then in the case of records and arrays, 
the use of pointers might still be the most efficient method of parameter passing. 

4. N e t w o r k  T iming  

The Language Reference Manual does not absolutely require that an implementation 
provide delay timing; it is legal for an implementation to go away and never return on a 
delay statement. However, for many applications the language would be significantly 
reduced in utility without this capability. As the principal applications of interest here 
are real-time systems, all of the discussion in this section is pertinent to the situation in 
which an implementation does provide timing capabilities. 

4.1. N e t w o r k  Sense o f  T i m e  

The package CALENDAR provides functions which return values of type TIME. 
The implication is that there is a single sense of TIME throughout at least the execution 
of the program, if not between different executions of the program. That is, if CLOCK is 
called twice, with an intervening interval of one second, the calculated difference in the 
times should be one second. This poses an implementation problem when multiple proces- 
sor~ are  used for the execution of the program. How is a consistent sense of time main- 
tained across the network? There are at least two possibilities, maintain a network time 
server to which all processors go when they need a value for time, or maintain separate 
but synchronized clocks on each processor. Combinations, of course, are also possible. 
Each has its own set of problems and limitations. 

In the case of the network time server, the principal difficulty occurs because of the 
time required to access the time server. Two subproblems must be considered, the propa- 
gation delay, and interfering access requests. It might be possible to compensate for the 
first by subtracting the response time from the time returned, if the response time were 
reliably known. However, the second problem usually injects an uncertainty in the 
response time from the server. For some timer server configurations, however, it may be 
possible to bound the uncertainty in the time value returned. 

The maintenance of perfectly synchronized local clocks is not possible. The best that 
can be done is to choose one as a master an update the others from it periodically. 
Between clock update points, there is an uncertainty of the difference between values of 
TIME read on different processors. The purpose of updating the clocks is to bound this 
uncertainty. One might, for example, try to keep this uncertainty less than one half of 
DURATION'SMALL. One experiment in maintaining synchronization among system 
clocks has been reported by Gusella and Zatti [GuZ84]. They found that  to keep a net- 
work of VAX computers and SUN workstations synchronized to within 20 ms required 
updates once every 173 seconds. Scaling this to 25 microseconds (half of the 50 
microsecond DURATION'SMALL recommended in the LRM) is moderately discouraging. 
Major improvements might be possible, though, by using a more stable clock in each of 
the processors. 

4.2. T imed E n t r y  Call  I m p l e m e n t a t i o n  

Most of the Ads constructs which reference time only require a local sense of time at 
each processor. For example, a delay statement within a task is simply a local delay with 



respect to processor on which the task resides. Similarly, the ~m~ = i~fiative in 
a select  statement with an accept  statement is strictly local  T h  :~nstruct,  
however, which if implemented in a nontrivial manner requires ] ~ / t h i ! ~ l ~ p 6 r b o u n d  on 
the time within which a given action must take place (all other ¢ o n g r ~  ~U/g place lower 
hounds on time intervals) and a consistent sense of time among the distril~uted processors. 
This construct is the timed entry call. " " 

The trivial implementation of the timed entry call would be to say that  there is no 
sense of time (across the network) and therefore that the rendezvous never takes place 
and the calling unit executes the alternative reference of code. If a aontrivial implementa- 
tion- is to he accomplished, then the timing of the action to be takea-0n the called unit 
must be determined with respect to the time scale of the calling ,unit. Otherwise, the 
language specification of the LRM cannot be guaranteed . . . .  

Consider a timed entry call made at  time t~, with a delay d ,  from a processor A to 
an entry on processor B. The time t~ = t I + d is the time by whichthe called task must 
be able to accept the call. Figure 3 illustrates the timing involved for non-negligible net- 
work delays. Two cases are shown. For case 1, the called entry is able to  accept the call 
at time t :  - ~ and the rendezvous is accepted. For case 2, time t :  is reached without the 
entry call being accepted and the timed entry fails. Note that ~is both cases processor A 
cannot know whether or not the call was accepted until some time after t 2. This requires 
a liberal interpretation of paragraph 9.6 of the LRM which states that ",,the entry call is 
canceled when  t h e  specified du ra t ion  is expired and the optional sequence of state- 
ments of the delay alternative is executed" (emphasis added). Taking the alternative 
sequence (if present) at time t~ + d + n~ on processor A is consistent with the LRM if 
one takes the view that  taking the alternative sequence only means:making it ready at 
some time after t2 .  The network delay, .~ ,  might or migh t not be known, or even 
bounded. It might well be different on the two transmissions. If nj  > J ,  then the ren- 
dezvous must fail. 

4.2.1. N e t w o r k  T i m e  Server 

With a network time server, the scenario would he as follows: 

* The processor containing the calling process will obtain the time from the network 
server and include both it and the specified delay in the timed entry call message 
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sent to the processor holding the called task. 

• The procesvor having the called task will call the network time server to obtain 
the time at the time the call is received. 

• The processor containing the called task will compute the remaining time delay 
with which the called task is requested to start. 

• Local management of the timed entry call will proceed as usual. 

in this case the network delay used above must include the two timer server access times 
in addition to the call transmission time. 

In order to obtain an expression for the local delay to be used on processor B in 
implementing this call, let t l  ~ be the value returned from the network timer server 
corresponding to time t I at which the call was made and t, I be the value returned 
corresponding to t , ,  the time at which the call message is received at processor B. Then, 
if the error in the times returned is bounded by ds ,  then the local delay dl satisfies the 
following inequality: 

d,  f f i  d -(t. - 

> d + t /  - t . '  - 2 d  B 

and the right had side of the inequality may be used to calculate the local delay on proces- 
sor B. 

4.2.2. M a i n t a i n  S y n c h r o n i s m  A m o n g  Loca l  C locks  

An alternative method of providing timing is to maintain synchronism among the 
local clocks of the processors. Similar to the situation in the previous section, there will 
be an uncertainty interval in the difference between the measured values of the same 
instant of t ime between any pair of processors. For purposes of analysis, take the time 
measured on processor A as the reference and let t A, t s be the values for time t as meas- 
ured on A and B respectively. Let ] t A _ t 8 I --< dB- Then the delay time from t, to 
the upper bound for t 2 can be bounded as follows. 

a ,  f f i  a - - , A  ) f f i  a + - 

The RHS of the inequality can safely be used as a bound on the local delay time from the 
receipt of the request until the maximum value of t 2. Similarly, there is a minimum of 
delay time tha t  can succeed. 

d >n~+dB 

4.2.3. Rely on the E x p o r t e d  V a l u e  of  Delay 

A third mechanism to manage timed entry calls is to export the time from the calling 
unit and use only this and local timing to manage things on the receiving processor. This 
requires knowledge, or at least a bound on the network transmission times. If 
[ nd I --< d~, then the receiving unit could use d - d a as a local bound on delay until 

t 2- The required existence of the bound d B in the purest sense imposes limits on the type 
of network connection. Ethernets, for example, could not guarantee this bound; on the 
other hand, they might be acceptable in a practical sense. 

4.2.4. U n l p r o c e s s o r  C o n s i d e r a t i o n s  

Considerations such as those described above can be carried out in a uniprocessor 
situation as well. For example, the delay na corresponds to the overhead associated with 
implementing the checking and rendezvous. Indeed, these times should be included in n a 



in the distributed situation as well. Depending upon the- i~el~Ylilmterval- 
implemented, n,f may be significant. This is likely to be the  , l~¢,¢uors at 
the 50 pseeond granularity recommended in the LRM n u d ¢ ~ i : ~ ~ / ~ f o r  the 10 
psecond granularity discussed for some implementations. S t r | c t ! y ~ : ~ I d ~ i l  these cases 
a timed entry call for small delays should fail even though a conditional entry call should 
succeed. This conformance is likely to be very difficult to measure, however. 

5 .  Execut ion  E n v i r o n m e n t  • 

Implementations of Ads are to provide several predermed packsges as-part of the 
environment available to the user. These include STANDARD, CALENDAR and 
TEXT_IO, and in general, must be available on more than one processor. The questions 
which arise are the consistency of data objects contained in or generated by subprograms 
in the package and the need to reference an object in one of these packages on a different 
processor, e.g. for !/O. These questions do not necessarily create a problem, but do 
require an awareness on the part of the programmer of the semantics associated with mul- 
tiple occurrences of these packages. 

In package STANDARD, the values for objects like SYSTEM.MIN_INT or 
SYSTEM.MAX_DIGITS may be different for the different occurrences of t he  package. 
Likewise, INTEGER, LONG INTEGER, SHORT_INTEGER, etc. may have different 
meanings. The meanings, however, will be correct for the processor on which the package 
resides, and this is exactly what the programmer will need. A s s  matter of  programming 
discipline, the programmer may find it useful to make greater use of some of the system 
descriptive objects to help in writing correct programs which can operate in the distri- 
buted environment. The distributed translator, however, must be aware of the possible 
differences in representation and supply the necessary translations. Also, it will be neces- 
sary to check values and, when necessary, raise exceptions, during the translation process. 

Particularly in the case of 1/O, it may be desired to reference an object supplied by 
TEXT_I/O from a processor other than the one on which the object resides. By embed- 
ding such requests in a block which is placed on the same processor as the referenced 
TEXT_I/O object, one can avoid the need to invent new naming conventions which might 
cause difficulties with the current definition or Ads. 

Finally, since a fine degree of granularity is used, the implementation must provide a 
suitable shell (probably a package) to house distributed objects such a~ data items or 
tasks. 

6 .  Expe r ime n ta l  T rans l a to r  Imp lemen ta t ion  

An Ads translator is being implemented which will convert a single Ads program 
into a set of inter-communicating Ads source programs, one to run on each node of the 
target network. The individual Ads programs will subsequently be compiled by existing 
Ads compilers, as illustrated in Figure 1. The mapping of objects to network nodes will 
be indicated by a pragma named SITE(.). When placed immediately before an object 
declaration, a new allocator or the occurrence of a block in the instruction stream this 
pragma will cause the following object to placed on the machine designator given as the 
parameter to the pragma. Any object created without a SITE pragma preceding it is 
assigned to the same node as the program unit in which the creation occurs. An alterna- 
tive mapping scheme would use a distribution language which allows the same mapping 
information to be specified separately from the program itself a s s  sort of postscript 
[Cor84]. 
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6.1. T r a n , l a t o r  S t r a t e g y  

The global strategy for handling cross-machine references is based on the static con- 
struction of one or more special executable objects called agents. Each agent is designed to 
serve one particular executable object of the original program which makes an off-machine 
reference. The original executable object is called the master, to distinguish it from its 
agents. The agents will typically be of the came type as their maste]~. If during execu- 
tion a master should need to access data or code located on a remote machine, it will 
order its agent on that machine to access the data or code for it. One master task may 
thus have several agents and in the extreme case, may need an agent on each of the other 
machines in the network. 

To illustrate the general translation scheme, Figure 4 shows the source program and 
the translations of a distributed program for an autonomous vehicle. The example system 
has three interacting tasks: a planner, a vision system, and a drive control .  The tasks are 
labeled PLANNER, CAMERA, and WHEELS, respectively. In the source program they 
are targeted for three different nodes. The translator will produce the three output pro- 
grams shown. Note how PLANNER, itself residing on M3, has indirect access to both 
CAMERA through AGENT OF PLANNER ON M1, and WHEELS via AGENT OF 
PLANNER ON M2. For example, if the original PLANNER calls a procedure P within 
CAMERA, PLANNER will be modified so that instead making the reference directly, 
which is not possible, it will place the parameters of the call in a message which in then 
sends to its agent residing on MI. PLANNER's agent will receive the message, decode it, 
and discover that  its master is attempting to call procedure P and, using the parameters 

t h a t  were included in the message, the agent will make the procedure call on its master's 
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F i g u r e  4 Distribution of source program to separate machine with agents inserted 
to represent task on remote machines. 
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behalf. After the call is done the agent will copy any o u t  a message 
which is then sent back to the master PLANNER. The m ~ ~ ~ : p a ~ a m e t e r  
values from the returned message into its local variables and, h a ~ v i a g ~ ~  the call to 
the remote procedure P, it continues execution. 

The translator can be constructed in two distinct passes. The fu~t pass produces an 
agent structure for each processor which is copy of the original program structure. Each 
executable object will have an agent on each processor which it (or an object it contains) 
references. The agents will be of the same type and will be nested in exactly the same 
manner as their masters, thus preserving the proper scope of objects created within them. 
This scheme, while generally applicable, can produce unnecessary menages among the pro- 
cessors (see further discussion below). The second pass is a n  optimization pass which 
removes these unnecessary messages. 

More specifically, the first pass involves three basic operations, one on overall pro- 
gram structure, one on object declarations or blocks, and one on executable statements. 
The first operation forms the distributed structure of the output code, maps the input 
program into the appropriate parts and creates the necessary agents, it  begi~ by extract- 
ing the skeleton of frames of executable objects, where the skeleton ¢onsbts of the follow- 
lug parts: 

• an opening line which marks the beginning of the frame, e. g. "declare" for a 
block or "procedure main is" for a procedure, 

• the keyword "begin" which separates the declarative region of the frame from its 
executable code, 

• the "end" statement which closes the frame. 

These frame skeletons, reflect the nesting of the frames of the program. On the one node 
to which a frame is mapped, the skeleton encloses master version of the frame. On all oth- 
ers, an agent is created from the skeleton by adding an infinite loop which begins each 
iteration waiting for a command (message) from the master. After receiving a message, it 
executes a case statement which contains one choice for each of the remote operations 
required by the master. The agent uses the command to index into the case statement. 

An agent is able to respond to any remote request it may receive from its master as 
long as both master and agent are in corresponding nesting levels in the program struc- 
ture. To ensure that this correspondence exists, each agent will enter and exit its version 
of a frame in synchronism with its master. To illustrate, suppose that  PLANNER is 
about to call procedure P, also located on M3'. PLANNER's agents wilt have been execut- 
ing server loops enclosed in their versions of the task PLANNER frame, Just before Calling 
procedure P, PLANNER notifies its agents of the impending procedure call allowing them 
to switch frames as well. One of the advantages of this scheme is that  any remote objects 
which have been declared in P will be allocated automatically as the agents enter their P 
frames. 

The operation on data object declarations is fairly straightforward. An object resides 
only on the node to which it is mapped. There are multiple output streams, one for each 
machine in the network, and all streams are in synchronism with respect to the code being 
emitted. The declaration is simply placed in the skeleton of the agent for the machine on 
which the object is to be located. 

The situation for remote object creation via allocators is slightly more complex, as it 
is both a run-time activity and involves pointers. The allocation expression is placed in 
the appropriate agent in a manner similar to the way declarations are handled, and the 
statement in original program is replaced by a remote procedure call to the agent, as 
described below. The pointer variable is placed in a record structure as described earlier. 

Within an execution object, off-machine subprogram or task entry nails are replaced 
by remote subprogram calls to the appropriate agent which makes ~theeall~on behalf of 
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the master and returns whatever results are required. Each reference to an off-machine 
data object, e.g. remote shared variables, is replaced by a remote subprogram call to the 
agent on the machine holding the referenced object, with an appropriate command code 
and any parameters required encoded into the call. If required, values are returned as 
function results, and used as normal in executing the statement in which the reference 
O C C U R S .  

7. Summary and Conelunlons 
A number of important issues which occUR in the distributed execution of a single 

Ads program have been raised, and an experimental implementation of a translator which 
allows distributed execution described. The issues raised include the interpretation of the 
LRM in the context of distributed execution (e.g. constructs such as conditional and timed 
entry calls), the need for a consistent network view of time, and a number of implementa- 
tion problems such as remote object access, network time management, data and address 
representations, and execution environments. 

The experimental translator allows any data or named execution object to be distri- 
buted. It recognizes a pragma type named SITE as specifying the distribution. The 
translator takes a single Ads program as input and produces a set of Ads programs, one 
for each processor in the •distributed computer network, as output. The general strategy 
for the implementation has been developed, and at the time of this writing, the translator 
is functional, but only partially complete, handling only •simple distribution of tasks with 
no entry parameters. 
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